Skip to main content Skip to secondary navigation

Hydrogen Initiative is a cross-campus effort of the Precourt Institute for Energy.

Generation

Main content start

Primary Research Goal: Lower the cost and increase scalability of carbon-free hydrogen production

A primary obstacle to widespread use of hydrogen is the production cost, especially from low-carbon energy sources. Stanford researchers are innovating new and inexpensive methods for generating hydrogen at scale without greenhouse gas emissions.

Green hydrogen refers to hydrogen produced with zero carbon by-products, typically through a process called electrolysis where renewable electricity is used to separate hydrogen and oxygen in water molecules.

Blue hydrogen combines two well-established technologies: steam methane reforming and carbon, capture and storage (CCS).

Faculty & Researchers | Areas of Interest | Related Publications

Faculty & Researchers

  • Alfred M. Spormann

    Professor of Civil and Environmental Engineering and of Chemical Engineering, Emeritus
  • Sally Benson

    Precourt Family Professor, Professor of Energy Science Engineering and Senior Fellow at the Precourt Institute for Energy and at the Woods Institute for the Environment
  • Jennifer Dionne

    Associate Professor of Materials Science and Engineering, Senior Fellow at the Precourt Institute for Energy and Associate Professor, by courtesy, of Radiology
  • William Chueh

    Associate Professor of Materials Science and Engineering, of Energy Science and Engineering, of Photon Science, and Senior Fellow at the Precourt Institute for Energy

Areas of Interest

Water Electrolysis: Developing lower cost electrolyzers

Tom Jaramillo Development of catalysts for H2 production and O2 evolution, with an emphasis on catalysts with low- or zero-precious metal content (PEM, AEM, BPM)

Xiaolin Zheng Development of low-cost methods to manufacture electrocatalysts and bipolar plates for electrolyzer; Development of active and selective electrocatalyst to convert water to hydrogen peroxide.

Will Chueh and Tyler Mefford Design of electrocatalysts and electrolytes for room temperature water electrolysis

Will Chueh and Tyler Mefford High temperature electrolysis of water and/CO2 at 100% selectivity

Arun Majumdar and Will Chueh Thermochemical routes for water splitting using scalable reactors

Hongjie Dai Electrolysis using seawater (DOE)

Matthias Ihme Surface-reaction and H2 catalysis

Reinhold Dauskardt Design of Polymer  Electrolyte Membrane (PEM) electrolyzers

Stefan Reichelstein Energy Conversion and Storage: The Value of Reversible Power-to-Gas Systems

Photocatalytic water splitting

Xiaolin Zheng Development of photoelectrodes and optimization of their interfaces with electrocatalysts for photoelectrochemical solar water splitting.

Matteo Cargnello and Jen Dionne Hydrogen production through photocatalysis Dimosthenis Sokaras - Photocatalytic water splitting for H2 production

Tom Jaramillo Integration of catalysts for H2 production and O2 evolution onto high-performance semiconductors for high efficiency and durability solar water-splitting.

Tom Jaramillo Development of new semiconductor light-absorbers for direct solar H2 production.

Tom Jaramillo Real-world testing of integrated solar H2 production systems.

Paul McIntyre Photoelectrochemical solar hydrogen production

Development of pyrolisis technology and markets analysis for solid carbon

Arun Majumdar and Matteo Cargnello Hydrogen production through the pyrolisis of methane (DOE/NGI)

Adam Brandt Technoeconomic analysis of methane pyrolysis to reduce industrial sector CO2 

Bio-generation. Developing biomass gasification (especially from recycled products no longer being exported)

Jim Swartz Developing an organism that can efficiently capture energy and convert it to Hydrogen

Alfred Spormann Use of hydrogenase to produce hydrogen

  • Generation of hydrogen from NADPH using an [FeFe] hydrogenase INTERNATIONAL JOURNAL OF HYDROGEN ENERGY Smith, P. R., Bingham, A. S., Swartz, J. R.2012; 37 (3): 2977-2983.  View details for DOI 10.1016/j.ijhydene.2011.03.172
  • Water electrolysis on La1-xSrxCoO3-delta perovskite electrocatalysts NATURE COMMUNICATIONS Mefford, J., Rong, X., Abakumov, A. M., Hardin, W. G., Dai, S., Kolpak, A. M., Johnston, K. P., Stevenson, K. J.2016; 7: 11053. View details for DOI 10.1038/ncomms11053
  • A. Shavorskiy, X. Ye, O. Karslioglu, A. Poletayev, M. Hartl, I. Zegkinoglou, L. Trotochaud, S. Nemsak, C. Schneider, E. Crumlin, S. Axnanda, Z. Liu, P. Ross, W. Chueh., H. Bluhm. Direct Mapping of Band Positions in Doped and Undoped Hematite during Photoelectrochemical Water Splitting. J. Phys. Chem. Lett. 8, 5579-5586 (2017)
  • Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide NATURE COMMUNICATIONS Shi, X., Siahrostami, S., Li, G., Zhang, Y., Chakthranont, P., Studt, F., Jaramillo, T. F., Zheng, X., Norskov, J. K.2017; 8: 701.  View details for PubMedID 28951571
  • Design and Fabrication of a Precious Metal-Free Tandem Core-Shell p(+)n Si/W-Doped BiVO4 Photoanode for Unassisted Water Splitting ADVANCED ENERGY MATERIALS Chakthranont, P., Hellstern, T. R., McEnaney, J. M., Jaramillo, T. F.2017; 7 (22). View details for DOI 10.1002/aenm.201701515
  • Effects of H-2 High-pressure Annealing on HfO2/Al2O3/In0.53Ga0.47As Capacitors: Chemical Composition and Electrical Characteristics SCIENTIFIC REPORTSChoi, S., An, Y., Lee, C., Song, J., Manh-Cuong Nguyen, Byun, Y., Choi, R., McIntyre, P. C., Kim, H.2017; 7: 9769. View details for PubMedID 28852035
  • S. Zhai, J. Rojas, N. Ahlborg, K. Lim, M. F. Toney, H. Jin, W. C. Chueh, A. Majumdar. Reduced-temperature thermochemical water-splitting using poly-cation oxides. Energy Environ. Sci. 11 2172-2178 (2018).
  • The Role of Catalyst Adhesion in ALD-TiO2 Protection of Water Splitting Silicon Anodes. ACS applied materials & interfaces Tang-Kong, R., Winter, R., Brock, R., Tracy, J., Eizenberg, M., Dauskardt, R. H., McIntyre, P. C.2018
  • Water splitting electrocatalysis within zirconium phosphate layered inorganic nanomaterials. Colon, J., Ramos-Garces, M., Sanchez, J., Barraza, I., Wu, Y., Del Toro, D., Villagran, D., Jaramillo, T.AMER CHEMICAL SOC. 2018.
    View details for Web of Science ID 000447609101149
  • Light-Driven BiVO4-C Fuel Cell with Simultaneous Production of H2O2.  ADVANCED ENERGY MATERIALS Shi, X., Zhang, Y., Siahrostami, S., Zheng, X.2018; 8 (23).View details for DOI 10.1002/aenm.201801158
  • Rapid flame doping of Co to WS2 for efficient hydrogen evolution ENERGY & ENVIRONMENTAL SCIENCE Shi, X., Fields, M., Park, J., McEnaney, J. M., Yan, H., Zhang, Y., Tsai, C., Jaramillo, T. F., Sinclair, R., Norskov, J. K., Zheng, X.2018; 11 (8): 2270–77. View details for DOI 10.1039/c8ee01111g
  • Enabling silicon photoanodes for efficient solar water splitting by electroless-deposited nickel NANO RESEARCH Zhao, J., Gill, T., Zheng, X.2018; 11 (6): 3499–3508. View details for DOI 10.1007/s12274-018-2038-4
  • Rapid Formation of a Disordered Layer on Monoclinic BiVO4: Co-Catalyst-Free Photoelectrochemical Solar Water Splitting CHEMSUSCHEM Kim, J., Cho, Y., Jeong, M., Levy-Wendt, B., Shin, D., Yi, Y., Wang, D., Zheng, X., Park, J.2018; 11 (5): 933–40.  View details for PubMedID 29274301
  • Photoelectrochemical Water Oxidation by GaAs Nanowire Arrays Protected with Atomic Layer Deposited NiO (x) Electrocatalysts Zeng, J., Xu, X., Parameshwaran, V., Baker, J., Bent, S., Wong, H., Clemens, B.SPRINGER. 2018: 932–37. View details for DOI 10.1007/s11664-017-5824-y
  • Enhancing Mo:BiVO4 Solar Water Splitting with Patterned Au Nanospheres by Plasmon-Induced Energy Transfer ADVANCED ENERGY MATERIALS Kim, J., Shi, X., Jeong, M., Park, J., Han, H., Kim, S., Guo, Y., Heinz, T. F., Fan, S., Lee, C., Park, J., Zheng, X.2018; 8 (5). View details for DOI 10.1002/aenm.201701765
  • The use of poly-cation oxides to lower the temperature of two-step thermochemical water splitting. Zhai, S.; Rojas, J.; Ahlborg, N.; Lim, K.; Toney, M. F; Jin, H.; Chueh, W. C; and Majumdar, A. Energy & Environmental Science. 2018.
  • High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials NATURE CATALYSISLu, Z., Chen, G., Siahrostami, S., Chen, Z., Liu, K., Xie, J., Liao, L., Wu, T., Lin, D., Liu, Y., Jaramillo, T. F., Norskov, J. K., Cui, Y.2018; 1 (2): 156–62.. View details for DOI 10.1038/s41929-017-0017-x
  • Designing Boron Nitride Islands in Carbon Materials for Efficient Electrochemical Synthesis of Hydrogen Peroxide. Journal of the American Chemical SocietyChen, S., Chen, Z., Siahrostami, S., Higgins, D., Nordlund, D., Sokaras, D., Kim, T. R., Liu, Y., Yan, X., Nilsson, E., Sinclair, R., Norskov, J. K., Jaramillo, T. F., Bao, Z.2018; 140 (25): 7851–59.  View details for PubMedID 29874062
  • Rapid flame doping of Co to WS2 for efficient hydrogen evolution ENERGY & ENVIRONMENTAL SCIENCEShi, X., Fields, M., Park, J., McEnaney, J. M., Yan, H., Zhang, Y., Tsai, C., Jaramillo, T. F., Sinclair, R., Norskov, J. K., Zheng, X.2018; 11 (8): 2270–77.
    View details for DOI 10.1039/c8ee01111g
  • The Role of Catalyst Adhesion in ALD-TiO2 Protection of Water Splitting Silicon Anodes. ACS applied materials & interfacesTang-Kong, R., Winter, R., Brock, R., Tracy, J., Eizenberg, M., Dauskardt, R. H., McIntyre, P. C.2018.. View details for PubMedID 30346686
  • Bimetallic nanostructures: combining plasmonic and catalytic metals for photocatalysis ADVANCES IN PHYSICS-XSytwu, K., Vadai, M., Dionne, J. A.2019; 4. View details for DOI 10.1080/23746149.2019.1619480
  • Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proceedings of the National Academy of Sciences of the United States of America Kuang, Y., Kenney, M. J., Meng, Y., Hung, W., Liu, Y., Huang, J. E., Prasanna, R., Li, P., Li, Y., Wang, L., Lin, M., McGehee, M. D., Sun, X., Dai, H.2019. View details for PubMedID 30886092
  • Synergistic Value in Vertically Integrated Power‐to‐Gas Energy Systems. Gunther Glenk, Stefan J. Reichelstein. Production and Operations Management, October 2019
  • A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nature nanotechnologyKing, L. A., Hubert, M. A., Capuano, C., Manco, J., Danilovic, N., Valle, E., Hellstern, T. R., Ayers, K., Jaramillo, T. F.2019. 
    View details for DOI 10.1038/s41565-019-0550-7
  • Transition Metal Arsenide Catalysts for the Hydrogen Evolution Reaction JOURNAL OF PHYSICAL CHEMISTRY CGauthier, J. A., King, L. A., Stults, F., Flores, R. A., Kibsgaard, J., Regmi, Y. N., Chan, K., Jaramillo, T. F.2019; 123 (39): 24007–12.
    View details for DOI 10.1021/acs.jpcc.9b05738
  • Surface Engineering of 3D Gas Diffusion Electrodes for High-Performance H-2 Production with Nonprecious Metal Catalysts ADVANCED ENERGY MATERIALSSanchez, J., Hellstern, T. R., King, L. A., Jaramillo, T. F.2019.  View details for DOI 10.1002/aenm.201901824
  • Interfacial engineering of gallium indium phosphide photoelectrodes for hydrogen evolution with precious metal and non-precious metal based catalysts JOURNAL OF MATERIALS CHEMISTRY ABritto, R. J., Young, J. L., Yang, Y., Steiner, M. A., LaFehr, D. T., Friedman, D. J., Beard, M., Deutsch, T. G., Jaramillo, T. F.2019; 7 (28): 16821–32. View details for DOI 10.1039/c9ta05247j
  • Enhancing Electrocatalytic Water Splitting by Strain Engineering ADVANCED MATERIALS You, B., Tang, M. T., Tsai, C., Abild-Pedersen, F., Zheng, X., Li, H.2019; 31 (17). View details for DOI 10.1002/adma.201807001
  • A Zn: BiVO4/ Mo: BiVO4 homojunction as an efficient photoanode for photoelectrochemical water splitting JOURNAL OF MATERIALS CHEMISTRY ALee, J., Baek, J., Gill, T., Shi, X., Lee, S., Cho, I., Jung, H., Zheng, X.2019; 7 (15): 9019–24. View details for DOI 10.1039/c9ta00205g
  • Rapid Flame-Annealed CuFe2O4 as Efficient Photocathode for Photoelectrochemical Hydrogen Production ACS SUSTAINABLE CHEMISTRY & ENGINEERING Park, S., Baek, J., Zhang, L., Lee, J., Stone, K. H., Cho, I., Guo, J., Jung, H., Zheng, X.2019; 7 (6): 5867–74. View details for DOI 10.1021/acssuschemeng.8b05824
  • Selective and Efficient Gd-Doped BiVO4 Photoanode for Two-Electron Water Oxidation to H2O2. ACS ENERGY LETTERS Baek, J., Gill, T., Abroshan, H., Park, S., Shi, X., Norskoy, J., Jung, H., Siahrostami, S., Zheng, X.2019; 4 (3): 720–28. View details for DOI 10.1021/acsenergylett.9b00277
  • Enhancing Electrocatalytic Water Splitting by Strain Engineering. Advanced materials (Deerfield Beach, Fla.) You, B., Tang, M. T., Tsai, C., Abild-Pedersen, F., Zheng, X., Li, H.2019: e1807001. View details for PubMedID 30773741
  • CaSnO3: An Electrocatalyst for Two-Electron Water Oxidation Reaction to Form H2O2. ACS ENERGY LETTERS Park, S., Abroshan, H., Shi, X., Jung, H., Siahrostami, S., Zheng, X.2019; 4 (1): 352–57. View details for DOI 10.1021/acsenergylett.8b02303
  • A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature Andersen, S. Z., Colic, V., Yang, S., Schwalbe, J. A., Nielander, A. C., McEnaney, J. M., Enemark-Rasmussen, K., Baker, J. G., Singh, A. R., Rohr, B. A., Statt, M. J., Blair, S. J., Mezzavilla, S., Kibsgaard, J., Vesborg, P. C., Cargnello, M., Bent, S. F., Jaramillo, T. F., Stephens, I. E., Norskov, J. K., Chorkendorff, I.All Authors2019. View details for DOI 10.1038/s41586-019-1260-x
  • Robust and biocompatible catalysts for efficient hydrogen-driven microbial electrosynthesis. COMMUNICATIONS CHEMISTRYKracke, F., Wong, A., Maegaard, K., Deutzmann, J. S., Hubert, M. A., Hahn, C., Jaramillo, T. F., Spormann, A. M.2019; 2M. View details for DOI 10.1038/s42004-019-0145-0
  • Robust and biocompatible catalysts for efficient hydrogen-driven microbial electrosynthesis. COMMUNICATIONS CHEMISTRY. Kracke, F., Wong, A., Maegaard, K., Deutzmann, J. S., Hubert, M. A., Hahn, C., Jaramillo, T. F., Spormann, A. M.2019; 2. View details for DOI 10.1038/s42004-019-0145-0 View details for Web of Science ID 000465438600001
  • Quantitative protocol for the electroreduction of N2 to NH3 under ambient conditions. Stephens, I., Andersen, S., Colic, V., Yang, S., Schwalbe, J., Nielander, A., McEnaney, J., Enemark-Rasmussen, K., Baker, J., Singh, A., Rohr, B., Blair, S., Mezzavilla, S., Kibsgaard, J., Vesborg, P., Cargnello, M., Bent, S., Jaramillo, T., Norskov, J., Chorkendorff, I.AMER CHEMICAL SOC. 2019. View details for Web of Science ID 000478860505876
  • Observing hydrogen intercalation into palladium thin films using in situ grazing incidence x-ray diffraction and x-ray reflectivity. Landers, A., Feaster, J., Brown, K., Lin, J., Farmand, M., Fackler, S., Nishimura, Y., Beeman, J., Bajdich, M., Higgins, D., Yano, J., Drisdell, W., Davis, R., Hahn, C., Mehta, A., Jaramillo, T.AMER CHEMICAL SOC. 2019. View details for Web of Science ID 000478860506048
  • Microbial Battery Powered Enzymatic Electrosynthesis for Carbon Capture and Generation of Hydrogen and Formate from Dilute Organics. ACS ENERGY LETTERSDubrawski, K. L., Shao, X., Milton, R. D., Deutzmann, J. S., Spormann, A. M., Criddle, C. S.2019; 4 (12): 2929–36.  View details for DOI 10.1021/acsenergylett.9b02203
  • > 10% solar-to-hydrogen efficiency unassisted water splitting on ALD-protected silicon heterojunction solar cells. SUSTAINABLE ENERGY & FUELS Tan, C., Kemp, K. W., Braun, M. R., Meng, A. C., Tan, W., Chidsey, C. D., Ma, W., Moghadam, F., McIntyre, P. C.2019; 3 (6): 1490–1500.. View details for DOI 10.1039/c9se00110g
  • Proton control in electrochemical ammonia synthesis. Schwalbe, J., Singh, A., Rohr, B., Statt, M., Nielander, A., McEnaney, J., Andersen, S., Colic, V., Yang, S., Chorkendorff, I., Jaramillo, T., Norskov, J., Cargnello, M.AMER CHEMICAL SOC. 2019. View details for Web of Science ID 000478860505877
  • Molybdenum Disulfide Catalytic Coatings via Atomic Layer Deposition for Solar Hydrogen Production from Copper Gallium Diselenide Photocathodes. ACS APPLIED ENERGY MATERIALS Hellstern, T. R., Palm, D. W., Carter, J., DeAngelis, A. D., Horsley, K., Weinhardt, L., Yang, W., Blum, M., Gaillard, N., Heske, C., Jaramillo, T. F.2019; 2 (2): 1060–66. View details for DOI 10.1021/acsaem.8b01562
  • ZnO As an Active and Selective Catalyst for Electrochemical Water Oxidation to Hydrogen Peroxide. ACS CATALYSIS. Kelly, S. R., Shi, X., Back, S., Vallez, L., Park, S., Siahrostami, S., Zheng, X., Norskov, J. K.2019; 9 (5): 4593–99. View details for DOI 10.1021/acscatal.8b04873
  • Nanostructuring Strategies To Increase the Photoelectrochemical Water Splitting Activity of Silicon Photocathodes. ACS APPLIED NANO MATERIALS Hellstern, T. R., Nielander, A. C., Chakthranont, P., King, L. A., Willis, J. J., Xu, S., MacIsaac, C., Hahn, C., Bent, S. F., Prinz, F. B., Jaramillo, T. F.2019; 2 (1): 6–11. View details for DOI 10.1021/acsanm.8b01966
  • C. Bäumer, J. Li, Q. Lu, A. Y.-L. Liang, L. Jin, H. P. Martins, T. Duchon, M. Glöß, S. M. Gericke, M. A. Wohlgemuth, M. Giesen, E. E. Penn, R. Dittmann, F. Gunkel, R. Waser, M. Bajdich, S. Nemsak, J. T. Mefford, W. C. Chueh. Tuning electrochemically-driven surface transformation in atomically-flat LaNiO3 thin films for enhanced water electrolysisNature Materials (2020).
  • Lee JK, Han HS, Chaikasetsin S, Marron DP, Waymouth RM, Prinz FB, Zare RN. Condensing water vapor to droplets generates hydrogen peroxide. Proceedings of the National Academy of Sciences of the United States of America. PMID 33229543 DOI: 10.1073/pnas.2020158117
  • Enhanced Electrosynthetic Hydrogen Evolution by Hydrogenases Embedded in a Redox-Active Hydrogel. Chemistry (Weinheim an der Bergstrasse, Germany)Ruth, J. C., Milton, R. D., Gu, W. n., Spormann, A. M.2020.. View details for DOI 10.1002/chem.202000750
  • Comparing Methods for Quantifying Electrochemically Accumulated H2O2 CHEMISTRY OF MATERIALS Gill, T., Zheng, X.2020; 32 (15): 6285–94. View details for DOI 10.1021/acs.chemmater.0c02010
  • On-demand production of hydrogen by reacting porous silicon nanowires with water. NANO RESEARCH. Ning, R., Jiang, Y., Zeng, Y., Gong, H., Zhao, J., Weisse, J., Shi, X., Gill, T. M., Zheng, X.2020. View details for DOI 10.1007/s12274-020-2734-8
  • Practical challenges in the development of photoelectrochemical solar fuels production. SUSTAINABLE ENERGY & FUELS Spitler, M. T., Modestino, M. A., Deutsch, T. G., Xiang, C. X., Durrant, J. R., Esposito, D. V., Haussener, S., Maldonado, S., Sharp, I. D., Parkinson, B. A., Ginley, D. S., Houle, F. A., Hannappel, T., Neale, N. R., Nocera, D. G., McIntyre, P. C.2020; 4 (3): 985–95. View details for DOI 10.1039/c9se00869a
  • Tungsten oxide-coated copper gallium selenide sustains long-term solar hydrogen evolution SUSTAINABLE ENERGY & FUELSPalm, D. W., Muzzillo, C. P., Ben-Naim, M., Khan, I., Gaillard, N., Jaramillo, T. F.2021; 5 (2): 384–90.  View details for DOI 10.1039/d0se00487a
  • Cobalt porphyrin intercalation into zirconium phosphate layers for electrochemical water oxidation SUSTAINABLE ENERGY & FUELS Barraza Alvarez, I., Wu, Y., Sanchez, J., Ge, Y., Ramos-Garces, M. V., Chu, T., Jaramillo, T. F., Colon, J. L., Villagran, D.2021; 5 (2): 430–37. View details for DOI 10.1039/d0se01134g
  • Addressing the Stability Gap in Photoelectrochemistry: Molybdenum Disulfide Protective Catalysts for Tandem III-V Unassisted Solar Water Splitting ACS ENERGY LETTERSBen-Naim, M., Britto, R. J., Aldridge, C. W., Mow, R., Steiner, M. A., Nielander, A. C., King, L. A., Friedman, D. J., Deutsch, T. G., Young, J. L., Jaramillo, T. F.2020; 5 (8): 2631–40. View details for DOI 10.1021/acsenergylett.0c01132
  • Computational discovery of metal oxides for chemical looping hydrogen production. Rojas, J.; Haribal, V.; Jung, I.; and Majumdar, A. Cell Reports Physical Science,100362. 2021.
  • Tuning electrochemially driven surface transformation in atomically flat LaNiO3 thin films for enhanced water electrolysis. Nature materialsBaeumer, C., Li, J., Lu, Q., Liang, A. Y., Jin, L., Martins, H. P., Duchon, T., GloSS, M., Gericke, S. M., Wohlgemuth, M. A., Giesen, M., Penn, E. E., Dittmann, R., Gunkel, F., Waser, R., Bajdich, M., Nemsak, S., Mefford, J. T., Chueh, W. C.2021. View details for DOI 10.1038/s41563-020-00877-1
  • Electrochemical Synthesis of H2O2 by Two-Electron Water Oxidation Reaction CHEM Shi, X., Back, S., Gill, T., Siahrostami, S., Zheng, X.2021; 7 (1): 38–63. View details for DOI 10.1016/j.chempr.2020.09.013